Sum
$sin(\alpha\ +\ \beta)\ =\ sin(\alpha) cos(\beta)\ +\ cos(\alpha)sin(\beta)$
Formulas in $\frac{\pi}{2}$:→ see $sin(\alpha +\beta)$ $\ =\ cos(\frac{\pi}{2}\ -\ (\alpha\ +\ \beta))$ $\ =\ cos((\frac{\pi}{2}\ -\ \alpha)\ -\ \beta))$ Cosine of a difference: → see $\ =\ cos(\frac{\pi}{2}\ -\ \alpha)cos(\beta)\ +\ sin(\beta)sin(\frac{\pi}{2}\ -\ \alpha)) $ $\ =\ sin(\alpha)cos(\beta)\ +\ sin(\beta)cos(\alpha) $
<Difference$sin(\alpha\ -\ \beta)\ =\ sin(\alpha) cos(\beta)\ -\ cos(\alpha)sin(\beta)$
$sin(\alpha\ +\ (-\beta))$ $=\ sin(\alpha) cos(-\beta)\ +\ cos(\alpha)sin(-\beta)$ ( sine of sum!) $=\ sin(\alpha) cos(\beta)\ -\ cos(\alpha)sin(\beta)$