Trigonometry
Trigonometric circle
 

Trigonometric circle

   Circle of radius = 1    $\alpha$ from axis $Ox$ in the direction indicated

More general definition of cosine and sine functions

   $cos\alpha\ = $ abscissa of point $P$    $sin\alpha\ = $ ordinate of the point $P$

Generalisation 1

   $cos(\pi\ -\ \alpha)\ =\ -cos\alpha $    $cos(\pi\ -\ \alpha)\ =\ sin\alpha $

Generalisation 2

   $cos(\pi\ +\ \alpha)\ =\ -\ cos\alpha $    $sin(\pi\ +\ \alpha)\ =\ -\ sin\alpha $

Generalisation 3

   $cos(-\ \alpha)\ =\ \ cos\alpha $    $sin(-\ \alpha)\ =\ -\ sin\alpha $

Generalisation 4

   $cos(2k\pi\ +\ \alpha)\ =\ \ cos\alpha $    $sin(2k\pi\ +\ \alpha)\ =\ \ sin\alpha $    with    $k$ positive or negative integer    $tan\alpha\ =\ \frac{sin\alpha}{cos\alpha}$

Formulas in $\frac{\pi}{2}$

   We see:        abscissa of A = ordinate of B    abscissa of B = ordinate of A    and so:

   $cos(\frac{\pi}{2}-\alpha)\ =\ sin\ \alpha $    $\ cos\ \alpha\ =\ sin(\frac{\pi}{2}-\alpha) $


Exercises

See table →  here


1

    Calculate $cos(\frac{2\pi}{3})$ !    


2

    Calculate $tan(\frac{ 5\pi}{4})$ !    


3

    Calculate $cos(330^o)$ !    


4

    Demonstrate $in\ \gamma\ =\ sin\ \eta$