Trigonometric circle
Circle of radius = 1 $\alpha$ from axis $Ox$ in the direction indicated
More general definition of cosine and sine functions
$cos\alpha\ = $ abscissa of point $P$ $sin\alpha\ = $ ordinate of the point $P$
Generalisation 1
$cos(\pi\ -\ \alpha)\ =\ -cos\alpha $ $cos(\pi\ -\ \alpha)\ =\ sin\alpha $
Generalisation 2
$cos(\pi\ +\ \alpha)\ =\ -\ cos\alpha $ $sin(\pi\ +\ \alpha)\ =\ -\ sin\alpha $
Generalisation 3
$cos(-\ \alpha)\ =\ \ cos\alpha $ $sin(-\ \alpha)\ =\ -\ sin\alpha $
Generalisation 4
$cos(2k\pi\ +\ \alpha)\ =\ \ cos\alpha $ $sin(2k\pi\ +\ \alpha)\ =\ \ sin\alpha $ with $k$ positive or negative integer $tan\alpha\ =\ \frac{sin\alpha}{cos\alpha}$
Formulas in $\frac{\pi}{2}$
We see: abscissa of A = ordinate of B abscissa of B = ordinate of A and so:
$cos(\frac{\pi}{2}-\alpha)\ =\ sin\ \alpha $ $\ cos\ \alpha\ =\ sin(\frac{\pi}{2}-\alpha) $
See table → here
Calculate $cos(\frac{2\pi}{3})$ !
$cos(\frac{2\pi}{3})\ =\ cos(\pi -\frac{\pi}{3})\ =\ - cos \frac{\pi}{3}\ =\ - \frac{1}{2}$
Calculate $tan(\frac{ 5\pi}{4})$ !
$cos(\frac{5\pi}{4})\ =\ cos(\pi +\frac{\pi}{4})\ =\ - cos \frac{\pi}{4}\ =\ - \frac{\sqrt{2}}{2}$ $sin(\frac{5\pi}{4})\ =\ sin(\pi +\frac{\pi}{4})\ =\ - sin \frac{\pi}{4}\ =\ - \frac{\sqrt{2}}{2}$ $tan(\frac{5\pi}{4})\ =\ \frac{sin(\frac{5\pi}{4})}{cos(\frac{5\pi}{4})}\ =\ 1$
Calculate $cos(330^o)$ !
$cos(330^o)\ = cos(\frac{11\pi}{6})\ =\ cos(2\pi -\frac{\pi}{6})\ =\ cos (- \frac{\pi}{6})\ =\ \frac{\sqrt{3}}{2}$
Demonstrate $in\ \gamma\ =\ sin\ \eta$
We first show that $\gamma\ =\ 180-\gamma'$: (1) $\eta\ = 180\ -(\epsilon+\alpha)-(\delta+\beta) $ (triangle ABD) (2) $\eta\ = 90\ -\ \epsilon$ (right trianglr) (3) $\eta\ = 90\ -\ \delta$ (right trianglr) _____________________________________________ (5) $\eta\ =\ \alpha\ +\ \beta$ (1)(2) and (3) (4) $\gamma\ =\ 180- (\ \alpha\ +\ \beta)$ (triangle ABC) _____________________________________________ $\gamma\ =\ 180\ - \eta$ $sin\gamma\ =\ sin \eta$