Iin the right triangle
Cosine: $cos\ \alpha\ =\ \frac{a}{h}$ Sine : $sin\ \alpha\ =\ \frac{a}{h}$ Tangent : $tan\ \alpha\ =\ \frac{a}{h}$ $h$ : hypothenuse $a$ : opposite side to $\alpha$ $b$ : adjacent side to $\alpha$ Other values: your calculator !
See figure above ! $\alpha\ =\ \frac{\pi}{3} rad$; $h\ =\ 30$ Calculate $b$ !
$b\ =\ h \cdot cos\alpha\ =\ 30\cdot \frac{1}{2}\ = 15$
See figure above ! $\alpha\ =\ \frac{\pi}{6} rad$; $h\ =\ 30$ Calculate $a$!
$a\ =\ h \cdot sin\alpha\ =\ 30\cdot \frac{1}{2}\ = 15$
Demonstrate: $cos^2\alpha\ + sin^2\alpha\ =\ 1$;
$cos^2\alpha\ + sin^2\alpha\ = $ $\frac{b^2}{h^2}\ +\ \frac{a^2}{h^2}= $ $\frac{a^2+b^2}{h^2} = $ $\frac{h^2}{h^2} = 1$ (→ Pythagore)
See figure above ! Demonstrate: $tan\alpha\ + \ =\ \frac{sin\alpha}{cos\alpha}$;
$\frac{sin\alpha}{cos\alpha} = $ $\frac{\frac{a}{h}}{\frac{b}{h}}\ = $ $\frac{a}{b}\ =\ tan\alpha $