Division of algebraic fractions: $\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} : \frac{c}{d} = \frac{ad}{bc}$ |
Got it !
$\frac{8x-2y}{x+y} : \frac{y-4x}{4x-y} =$ | $\frac{2(4x-y)}{x+y} $ |
$\frac{4+2a}{6-3a} : \frac{a+2}{(a-2)^2} =$ | $\frac{2(2-a)}{3} $ |
$\frac{\frac{3c}{1-b}}{\frac{c}{3(1+b)}} =$ | $\frac{9(1+b)}{1-b}$ |
$1-\frac{\frac{1}{x}}{x} =$ | $1-1=0 $ |