$\LARGE 1 + x = 3$ | $\LARGE x = 3-1\qquad : \qquad S=\{2\}$ |
$\LARGE 3+x=-x+3$ | $\LARGE x+x = 3-3 \qquad;\qquad 2x = 0\qquad ;\qquad S =\{0\} $ |
$\LARGE 3+x=x+3$ | $\LARGE x-x = 3-3 \qquad;\qquad 0x = 0\qquad ;\qquad S = \mathbb R $ ( All real numbers are solution !) |
$\LARGE 3+2x=x+3$ | $\LARGE 3x-x = 3-3 \qquad;\qquad 2x = 0\qquad ;\qquad S =\{0\}$ |
$\LARGE 3+x=2x+4$ | $\LARGE x-2x = 4-3 \qquad;\qquad -x = 1\qquad;\qquad x = -1\qquad ;\qquad S =\{-1\} $ |