Melting temperature of an ideal dilute solution of a non-volatile solute

Diagram

This diagram shows - Saturation vapour pressure curves of the liquid solvent $1$ and corresponding solid $2$ (see →       here) - The saturation vapour pressure curves of two solutions: $s$ with mole fraction of solute $X_s$ (curve $3$) and $S$ with mole fraction of solute $X_S$ (curve $4$)

Melting temperature decrease and solute mole fraction

For dilute solutions, most of the previous diagram plays in a very small portion of temperatures where the curves $ 1,2,3,4$ can almost be considered to be linear:

With this heuristic approach, we may use elementary geometry: Similar triangles $ABD$ and $ACE:$ $\frac{AB}{AC}=\frac{AD}{AE}\,(1)$ Similar triangles $ABF$ and $ACG:$ $\frac{AB}{AC}=\frac{BF}{CG}\,(2)$ Raoult´s law (non-volatile solute!): $AD=X_sP\,(3)$ $AE=X_SP\,(4)$ where $P$ represents the saturation vapour pessure of the solvent at its boiling temperature $T_{eb}$ Noticing that $BF=\Delta T_{eb\;s}$ and $CG=\Delta T_{eb\;S}$, and combining the preceding equations, we find: $\frac{\Delta T_{eb\;s}}{\Delta T_{eb\;S}}=\frac{X_s}{X_S}$

The decrease of the melting temperature of a dilute solution of an ideal non-volatile solute $A$ is proportional to the mole fraction of solute : $\Delta T=K\cdot X_A$ (**)

Decrease of boiling temperature and molality of the solvent

Quantities

A $0,1\;M$ dilute aqueous solution of glucose contains per liter $55.5$ moles water and only $0,1$ mole glucose!

Approximation

For a dilute solution of non-volatile solute $A$ in solvent $B$ , neglecting the number of moles of solute $A$ in $X_A$: $X_A$ $=$ $\frac{n_A}{n_A+n_B}$ $\approx $ $\frac{n_A}{n_B}$ $= $ $\frac{M_B\;n_A}{m_B}$ $= $ $\frac{M_B}{1000}\frac{1000\;n_A}{m_B}$ $=$ $\frac{M_B}{1000}\mu_A$ where $\mu_A$ is the molality of $A$ $M_B$ is the molar mass of $B$ $n_A$ are the number of moles of $A$ $n_B$ are the number of moles of $B$ $m_B$ is the mass of $B$ expressed in grams (**) gives in that case: $\Delta T$ $=$ $K\cdot\frac{M_B}{1000}\mu_A$

The decrease of the melting temperature of a dilute solution of an ideal nonvolatile solute $A$ is proportional to the molality of the solute: $\Delta T=K_{fus}\cdot \mu_A$ $K_{fus}$ is the cryoscopic constant which depends on the solvent

Melting temperatures and cryoscopic constants $\frac{^o}{mol}$

Solvent Nom $t_{fus}$ $K_{fus}$
CH3CO2H Acetic acid $16.604$ $3.90$
CH3COCH3 Acetone $-95.35$ $0.850$
C6H5NH2 Aniline $-6.3$ $5.87$
C6H6 Benzene $5.5$ $4.90$
CS2 Carbon disulfide $-111.5$ $3.83$
CCl4 Carbon tetrachloride $-22.99$ $30.0$
CHCl3 Chloroforme $-63.5$ $4.70$
C6Hl2 Cyclohexane $6.55$ $20.0$
(C2H5)2O Diethylether $-116.2$ $1.79$
C10H8 Naphtalene $80.55$ $6.80$
C6H5NO2 Nitrobenzene $5.7$ $7.00$
C6H5OH Phenol $43$ $7.27$
C2H5OH Ethanol $-117.3$ $1.99$
H2O Water $0.0$ $1.86$

Examples

Solution $s$ contains $0.124\; mol$ of a non-volatile solute in $250\; g$ d’eau. Calculate its melting temperature $T_s$.

Solution $s$ contains $0.124\; mol$ de magnesium chloride $(MgCl_2. \alpha=0.85)$ in $250\; g$ water. Calculate its melting temperature $T_s$.

Exercises Try them →   here