Boiling point of a dilute ideal solution of a non-volatile solute

Diagram

According to the law of Raoult, →      the saturation vapour pressure diagram $P_s(T)$ of such a solution is as follows:

Boiling temperature increase and mole fraction of the solute

As the function $P(T)$ is (obviously) continuous and differentiable in the diagram portion represented, we can use the mean value theorem: $P(T_B)-P(T_A)$ $=$ $P^{`}(T_i)(T_B-T_A)$ where $P^{`}(T_i)$ is the derivative at a point intermediate between$T_A$ and $ T_B$, therefore equal to a constant $k$ Seen on the diagram $DC-EA$ $=$ $k(T_B-T_A)$ $BC$ $=$ $k(T_B-T_A)$ $P(T_A)-P_s(T_A)$ $=$ $k(T_B-T_A)$ $P(T_A)-X_B\;P(T_A)$ $=$ $k(T_B-T_A)$ (*) $P(T_A)(1-X_B)$ $=$ $k(T_B-T_A)$ $X_AP(T_A))$ $=$ $k(T_B-T_A)$ $(T_B-T_A)$ $=$ $\frac{P(T_A)}{k}X_A$ where $P(T_A)$ $= $ $1 \;atm$ $(T_B-T_A)$ $=$ $\frac{1}{k}X_A$ (**)

The increase in the boiling temperature of an ideal dilute solution of a nonvolatile solute $A$ is proportional to the mole fraction of solute : $\Delta T=K\cdot X_A$

Increase in temperature and molality of the solute

Quantities

Dilute $0.1\;M$ solution of glucose in water contains per liter $55.5 $ moles of water and only $0.1$ mole of glucose!

Approximation

Given a dilute solution of a solute $A$ and solvent $B$, neglecting the number of moles of solute $A$ in $X_A$: $X_A$ $=$ $\frac{n_A}{n_A+n_B}$ $\approx $ $\frac{n_A}{n_B}$ $= $ $\frac{M_B\;n_A}{m_B}$ $= $ $\frac{M_B}{1000}\frac{1000\;n_A}{m_B}$ $=$ $\frac{M_B}{1000}\mu_A$ where $\mu_A$ is the molality of $A$ $M_B$ is the molar mass of $B$ $n_A$ are the number of moles of $A$ $n_B$ are the number of moles of $B$ $m_B$ is the mass of $B$ expressed in grams (**) gives in that case: $\Delta T$ $=$ $K\cdot\frac{M_B}{1000}\mu_A$

The increase in the boiling temperature of an ideal dilute solution of a nonvolatile solute $A$ is proportional to the molality of the solute : $\Delta T=K_{eb}\cdot \mu_A$ $K_{eb}$ is the ebullioscopic constant which depends on the solvent

Boiling temperatures and ebullioscopic constants in $\frac{^o}{mol}$

Solvent Nom t(eb) $K_{eb}$
CH3CO2H Acetic acid $117.9$ $3.07$
CH3COCH3 Acetone $56.2$ $1.71$
C6H5NH2 Aniline $184.13$ $3.22$
C6H6 Benzene $80.1$ $2.53$
CS2 Carbon disulfide $46.2$ $2.37$
CCl4 Carbon tetrachloride $76.5$ $4.95$
CHCl3 Chloroforme $61.2$ $3.66$
C6Hl2 Cyclohexane $80.74$ $2.79$
(C2H5)2O Diethylether $34.5$ $1.82$
C10H8 Naphtalene $218$ $5.8$
C6H5NO2 Nitrobenzene $210.8$ $5.26$
C6H5OH Phenol $181.75$ $3.04$
C2H5OH Ethanol $78.5$ $1.22$
H2O Water $100.0$ $0.512$

Examples

1) Solution $s$ contains $0.124$ mol of a non-volatile solute in $250\; g$ water. Calculate its boiling temperature $T_s$.

2) Solution $s$ contains $0.124$ mol magnesium chloride $(MgCl_2. \alpha=0.85)$ in $250\; g$ water. Calculate its boiling temperature $T_s$.

Exercises To try →   here