pH of acids, bases and salts

Exercise 16

    

Using the simplified formula for the $pH$ of a weak base, calculate the volume of a 30  %  ($\rho_S=$ 0.892 $\frac{g}{mL}$)  ammonia solution that must be diluted in a volumetric flask $j$ of 500 $mL$ in order to obtain a solution with $pH$ = 11.02.

$NH_3$: weak base Final solution: $pOH$ $=$ $\frac{1}{2}pK_b$ $-$ $\frac{1}{2}log\;c$ $pH$ $=$ $7$ $+$ $\frac{1}{2}pK_a$ $+$ $\frac{1}{2}log\;c$ $c$ $=$ $10^{2pH$ $-$ $14-pK_a}$ = 0.07 $\frac{mol}{L}$ $n_{NH_3}$ = $c_{NH_3}\cdot V_{j}$ = 0.07$\cdot$0.5 = 0.035 $\;mol$ The concentrated initial solution has the same number of moles: Initial solution $S$: $m_{NH_3}$ = $n_{NH_3}\cdot M_{NH_3}$ = 0.035$\cdot$17.03 = 0.596$ \;g$ $m_S$ = $\frac{m_{NH_3}\cdot 100}{\%_S}$ = $\frac{0.596\cdot 100}{30}$ = 1.987$ \;g$ $V_S$ = $\frac{m_S}{\rho_S}$ = $\frac{0.596}{0.892}$ = 0.668$ \; mL$