Définition dans le triangle rectangle:
$tan\ \alpha\ =\ \frac{côté opposé}{côté adjacent}$ $tan\ \alpha\ =\ \frac{a}{b}$
Relation avec sinus et cosinus
$tan\ \alpha\ =\ \frac{sin\ \alpha}{cos\ \alpha}$
$\frac{sin\ \alpha}{cos\ \alpha}$ $=\ \frac{\frac{a}{c}}{\frac{b}{c}}$ $=\ \frac{a}{b} = tan\ \alpha$
Dans le cercle trigonométrique$tan\ \alpha$ = coordonnée sur l'axe des tangentes
Théoreme de Thalès: $\frac{tan\alpha}{sin\alpha}\ =\ \frac{1}{cos\alpha}$ $tan\alpha\ = \frac{sin\alpha}{cos\alpha}$ selon la définition en haut
Tangente d'une somme$tan(\ \alpha\ +\ \beta)$ = $\frac{tan\ \alpha\ + tan\ \beta}{1-tan\ \alpha\cdot\ tan\ \beta}$
$\frac{tan\ \alpha\ + tan\ \beta}{1\ -\ tan\ \alpha\cdot\ tan\ \beta}$ $=\frac{\frac{sin\ \alpha}{cos\ \alpha}+\frac{sin\ \beta}{cos\ \beta}}{1-\frac{sin\ \alpha}{cos\ \alpha}\ \cdot\ \frac{sin\ \beta}{cos\ \beta}}$ $=\ \frac{\frac{sin\ \alpha cos\ \beta + cos\ \alpha sin\ \beta}{cos\ \alpha cos\ \beta}}{\frac{cos\ \alpha cos\ \beta - sin\ \alpha sin\ \beta}{cos\ \alpha cos\ \beta}} $ $=\ \frac{sin\ \alpha cos\ \beta + cos\ \alpha sin\ \beta}{cos\ \alpha cos\ \beta - sin\ \alpha sin\ \beta}$ $=\ \frac{sin(\alpha\ +\ \beta)}{cos(\alpha\ +\ \beta)}$ $=\ tan(\alpha\ +\ \beta) $
Démontrons: 1)$tan(\ -\ \alpha)\ =\ -\ tan\ \alpha$ 2)$tan(\pi\ -\ \alpha)\ =\ -\ tan\ \alpha$ 3)$tan(\pi\ +\ \alpha)\ =\ \ tan\ \alpha$ 2)$tan(\frac{\pi}{2}\ -\ \alpha)\ =\ \frac{1}{tan\ \alpha}\ =\ cotan\ \alpha $
1)$tan(\ -\ \alpha)\ =\ \frac{sin( -\ \alpha)}{cos(-\ \alpha)} =\ \frac{-\ sin\ \alpha}{cos\ \alpha} =\ -\ tan\ \alpha$ 2)$tan(\pi\ -\ \alpha)\ = \ \frac{sin(\pi\ -\ \alpha)}{cos(\pi\ -\ \alpha)} =\ \frac{sin\ \alpha}{-\ cos\ \alpha} =\ -\ tan\ \alpha$ 3)$tan(\pi\ +\ \alpha)\ = \ \frac{sin(\pi\ +\ \alpha)}{cos(\pi\ +\ \alpha)} =\ \frac{-sin\ \alpha}{-\ cos\ \alpha} =\ \ tan\ \alpha$ 2)$tan(\frac{\pi}{2}\ -\ \alpha)\ = \ \frac{sin(\frac{\pi}{2}\ -\ \alpha)}{cos(\frac{\pi}{2}\ -\ \alpha)} =\ \frac{cos\ \alpha}{sin\ \alpha} =\ \frac{1}{tan\ \alpha}\ =\ cotan\ \alpha $