Tigonometrie
Tangente
 

Definition im rechtwinkligem Dreieck:

   $tan\ \alpha\ =\ \frac{entgegengesetzte Seite}{angelehnte Seite}$    $tan\ \alpha\ =\ \frac{a}{b}$

Formel mit Sinus und Cosinus

   $tan\ \alpha\ =\ \frac{sin\ \alpha}{cos\ \alpha}$

   

Im trigonometrischen Kreis

   $tan\ \alpha$ = Koordinate auf der Tangentenaxe

   

Tangente einer Summe

   $tan(\ \alpha\ +\ \beta)$ = $\frac{tan\ \alpha\ + tan\ \beta}{1-tan\ \alpha\cdot\ tan\ \beta}$

   


Übung

   Beweise:     1)$tan(\ -\ \alpha)\ =\ -\ tan\ \alpha$     2)$tan(\pi\ -\ \alpha)\ =\ -\ tan\ \alpha$     3)$tan(\pi\ +\ \alpha)\ =\ \ tan\ \alpha$     2)$tan(\frac{\pi}{2}\ -\ \alpha)\ =\ \frac{1}{tan\ \alpha}\ =\ cotan\ \alpha $