Tigonometrie
Sinussatz
 

In jedem Dreieck:

      $\frac{sin\alpha}{a}\ =\ \frac{sin\beta}{b}\ =\ \frac{sin\gamma}{c} $ $a$ : $\alpha$ entgegen $b$ : $\alpha$ angelehnt $c$ : $\gamma$ entgegen


Beweis

    Es sei $S$ der Flächeninhalt des Dreiecks:     $S\ =\ \frac{c\cdot h1}{2}\ =\ \frac{a\cdot h3}{2}\ =\ \frac{b\cdot h2}{2} $;     $S\ =\ \frac{c\cdot a\cdot sin\beta}{2}\ =\ \frac{a\cdot b\cdot sin\gamma}{2}\ =\ \frac{b\cdot b\cdot sin\alpha}{2} $;         Division durch $\frac{abc}{2}$     $\ \frac{c\cdot a\cdot sin\beta}{abc}\ =\ \frac{a\cdot b\cdot sin\gamma}{abc}\ =\ \frac{b\cdot b\cdot sin\alpha}{abc} $;     $\ \frac{ sin\beta}{b}\ =\ \frac{sin\gamma}{c}\ =\ \frac{ sin\alpha}{a} $;


Übungen


1

    Berechnen Sie $\gamma$ !    


2

    Siehe Figur oben !     $\alpha\ =\ \frac{\pi}{6} rad$;     $h\ =\ 30$     Berechnen Sie $a$!    


3

    Beweisen Sie:     $cos^2\alpha\ + sin^2\alpha\ =\ 1$;