$\LARGE -x^2 \lt x - 12$ | $\LARGE x^2 + x -12 \gt 0$, puis $\LARGE x\gt 3$ ou $\LARGE x\lt -4$, $\LARGE S = ]-\infty ,-4[ \cup ]3 , +\infty [$ |
$\LARGE x^2 \lt 8 - 7x$ | $\LARGE x^2 + 7x -8 \lt 0$ , puis $\LARGE x \gt -8$ et $\LARGE x\lt 1$, $\LARGE S = ]-8, 1[$ |
$\LARGE x^2 + 31x \gt -150$ | $\LARGE x^2 + 31x + 150 \gt 0$ , puis $\LARGE x \gt -6$ ou $\LARGE x\lt -25$, $\LARGE S = ]-\infty ,-25[ \cup ]-6 , +\infty [$ |
$\LARGE x^2 -3x \geq -2$ | $\LARGE x^2 -3x +2 \geq 0$ , puis $\LARGE x \geq 2$ ou $\LARGE x \leq 1$, $\LARGE S = ]-\infty ,1] \cup [2 , +\infty [$ |
$\LARGE x^2 + 31x \gt -150$ | $\LARGE x^2 + 31x + 150 \gt 0$ , puis $\LARGE x \gt -6$ ou $\LARGE x\lt -25 $, $\LARGE S = ]-\infty ,-25[ \cup ]-6 , +\infty [$ |
$\LARGE 5 - 4x \gt x^2$ | $\LARGE x^2 + 4x - 5 \lt 0$ , puis $\LARGE -5 \lt x \lt 1$ , $\LARGE S = ]-5, 1[$ |
$\LARGE 4x(x+3) \geq -9$ | $\LARGE 4x^2 + 12x +9 \geq 0$ , puis $\LARGE S = \mathbb R$ |
$\LARGE 5 - 4x \gt x^2$ | $\LARGE x^2 + 4x - 5 \lt 0$ , puis $\LARGE S = \mathbb R \setminus \{1\}$ |