Factoriser les trinômes du type: $x^2+(a+b)x+ab = (x+a)(x+b)$: |
Got it !
$\LARGE x^2+5x+6 =$ | $\LARGE x^2+(2+3)x+2 \cdot 3 =(x+2)(x+3) $ |
$\LARGE x^2-8x+12 =$ | |
$\LARGE x^2-4x-5 =$ | |
$\LARGE x^2+5x-14 =$ | |
$\LARGE x^3-4x^2-12x =$ | |
$\LARGE (x^2+16)^2-100x^2 =$ | |
$\LARGE 2x-2-3x+3x^2+x^3-x^2 =$ |
$\LARGE \frac{x^2-2x-3}{9-x^2} =$ | |
$\LARGE \frac{x^2-7x-8}{x^3+3x^2+2x} =$ | |
$\LARGE \frac{x^3-x^2-4x+4}{x^2-3x+2} =$ |
$\LARGE \frac{x}{x^2+x-2}=\frac{1}{1-x}$ | |
$\LARGE \frac{x^2--7x+10}{x^2-25}= \frac{1}{2}$ | |
$\LARGE \frac{\frac{1}{x-1}}{\frac{1}{-3x+x^2+2}}=-1$ |