$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$
Go !
Factoriser: !
$\LARGE a^3 + 1 =$
$\LARGE (a - 1)(a^2 + a + 1)$
$\LARGE 16 + 2x^3y^3 = $
$\LARGE 2 (2 + xy)(4 - 2xy + x^2y^2) $
$\LARGE 108 - 4x^3 = $
$\LARGE 4 (6 - x)(36 + 6x + x^2) $
$\LARGE 54x^3 - 2 = $
$\LARGE 2 (3x - 1)(9x^2 + 3x + 1) $
>