Valeur de x annulle un dénominateur: $ S=\{ \}$ (impossible) $0x =a \not = 0: S=\{ \}$ (impossible) $0x = 0: S=\mathbb R $ (indéterminé) |
Got it !
2x-$\frac{2x}{9}=\frac{1}{9}(1x-\frac{3}{2})$ | |
$\frac{5x}{18}-\frac{4x-3}{8}=\frac{9-2x}{9}$ | |
$\frac{3x}{2}-\frac{2x}{3}=5(\frac{x}{6}+1)-5$ | |
$\frac{2}{x+1}+\frac{5}{x-1}=\frac{10}{x^2-1}$ | |
$\frac{2x-3}{5}+\frac{x}{2}= \frac{3(3x-2)}{10}$ | |
$\frac{4}{x}+\frac{x}{x+1}=\frac{x^2}{x^2+x}\frac{}{}$ |