Simplifier. (Attention: numérateur et dénominateur doivent être factorisés !)

Got it ! Simplifier. (Attention: numérateur et dénominateur doivent être factorisés !)

$\frac{a(b-c)}{d(c-b)} =$ $\frac{a(b-c)}{-d(b-c)} = -\frac{a}{d} $
$\frac{3x}{9y} = $ $\LARGE \frac{3x}{3\cdot3y}$ = $\LARGE \frac{x}{3y}$
$\frac{x^2}{2x} = $ $\LARGE \frac{xx}{2x}$   =   $\LARGE \frac{x}{2} $
$\frac{xy+x}{2x^2} = $ $\LARGE \frac{x(y+1)}{2xx}$   =   $\LARGE \frac{y+1}{2x} $
$\frac{a}{a^2+ab} = $ $\LARGE \frac{1a}{a(a+b)}$   =   $\LARGE \frac{1}{a+b} $
>