Effectuer ou factoriser par la différence de de deux carrés: $(a+b)(a-b)=a^2-b^2$ |
Got it ! Effectuer:
$(x+1)(x-1) = $ | $x^2 - 1^2 = x^2 - 1$ |
$(3x + 2y)(3x - 2y) = $ | $9x^2 - 4y^2$ |
$(5a - 5)(3a + 3) =$ | |
$(a - 1)(a + 1)(a^2 + 1)) =$ | |
$x^{20} - (x^{10} - 1)(x^{10} + 1) =$ |
Factoriser:
$4x^2 - 9 = $ | $(2x - 3)(2x + 3)$ |
$121x^2 - 100y^2 = $ | $(11x - 10y)(11x + 10y)$ |
$(a+2)^2-(a-1)^2 =$ | |
$a^3-(a-1)^2a =$ | |
$18-2(a-1)^2 =$ |