$ \LARGE \begin{bmatrix} \color{black}1 & \color{black}2 \\\color{black}2 &\color{black}-1 \end{bmatrix}\cdot \begin{bmatrix} \color{black}x \\\ \color{black}y \end{bmatrix} = \begin{bmatrix} \color{black}4 \\\ \color{black}3 \end{bmatrix} $
| $\LARGE \begin{bmatrix} \color{black}x \\\ \color{black}y \end{bmatrix} = \frac{1}{-1-4}\begin{bmatrix} \color{black}-1 & \color{black}-2 \\\ \color{black}-2 & \color{black}1 \end{bmatrix}\cdot \begin{bmatrix} \color{black}4 \\\ \color{black}3 \end{bmatrix}=$
$\LARGE \frac{1}{5}\begin{bmatrix} \color{black}10 \\\ \color{black}5 \end{bmatrix} = \begin{bmatrix} \color{black}2 \\\ \color{black}1 \end{bmatrix}$ |
$ \LARGE \begin{bmatrix} \color{black}1 & \color{black}-1 \\\color{black}2 &\color{black}3 \end{bmatrix}\cdot \begin{bmatrix} \color{black}x \\\ \color{black}y \end{bmatrix} = \begin{bmatrix} \color{black}1 \\\ \color{black}17 \end{bmatrix} $
| $\LARGE \begin{bmatrix} \color{black}x \\\ \color{black}y \end{bmatrix} = \frac{1}{5}\begin{bmatrix} \color{black}3 & \color{black}1 \\\ \color{black}-2 & \color{black}1 \end{bmatrix}\cdot \begin{bmatrix} \color{black}1 \\\ \color{black}17 \end{bmatrix}=$
$\LARGE\begin{bmatrix} \color{black}4 \\\ \color{black}3 \end{bmatrix}$ |
$ \LARGE \begin{bmatrix} \color{black}\frac{1}{2} & \color{black}5 \\\color{black}2 &\color{black}20 \end{bmatrix}\cdot \begin{bmatrix} \color{black}x \\\ \color{black}y \end{bmatrix} = \begin{bmatrix} \color{black}1 \\\ \color{black}-2 \end{bmatrix} $
| impossible , because
$\LARGE det(M) = \frac{1}{2}20-2\cdot 5 = 0$ |