A square matrix A is said to be invertible or regular if there exists a square matrix A{-1} (called the inverse matrix) such that
$A \cdot A^{-1} = A^{-1}\cdot A = I$
where I is the unitmatrix :
$ \LARGE \begin{bmatrix} \color{black}1 & \color{black}0 \\\color{black}0 &\color{black}1 \end{bmatrix} $
We can show (see later):
$ \LARGE A = \begin{bmatrix} \color{red}a & \color{red}b \\\color{red}c &\color{red}d \end{bmatrix}
\rightarrow A^{-1} = \frac{1}{det A}\cdot \begin{bmatrix} \color{red}d & \color{red}-b \\\color{red}-c &\color{red}a\end{bmatrix} $