$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Got it ! Factorize: !

$\LARGE x^3+8 = $ $\LARGE (x+2)(x^2-2x+4) $
$\LARGE 81x^3+24 = $ $\LARGE 3(3x+2)(9x^2-6x+4) $
$\LARGE 2x^3+54y^3 = $ $\LARGE 2 (x+3y)(x^2-3xy+9y^2) $
$\LARGE 108-4x^3 = $ $\LARGE 4(3-x)(9+3x+x^2) $
$\LARGE a^6 - 64 = $ $\LARGE (a^3 - 8)(a^3 + 8) =(a - 2)(a^2+ 2a + 4)(a + 2)(a^2 - 2a + 4) $
$\LARGE 2a^6-8192 = $ $\LARGE 2(a+4)(a^2-4a+16)(a-4)(a^2+4a+16) $