$\LARGE \sqrt {12}= $ | $2\sqrt 3$ |
$\LARGE \sqrt {\frac{1}{9}}= $ | $\LARGE \frac{1}{3}$ |
$\LARGE \sqrt{a^9} = $ | $\LARGE a^4\sqrt a$ if $\LARGE a \ge 0$ |
$\LARGE \sqrt{\frac{320a^5}{x^3}} = $ | $\LARGE \frac{8a^2}{x^2}\sqrt{5ax} $ , if $\LARGE ax\ge 0$ |
$\LARGE \sqrt{\frac{1}{5}} $ | $\LARGE \frac{1}{\sqrt 5}=\frac{1\sqrt 5}{\sqrt 5\sqrt 5}=\frac{\sqrt 5}{5}$ Denominator made rational |
$\LARGE \sqrt{\frac{12a^9}{5b^8}}=$ | $\LARGE \frac{2a^4}{5b^4}\sqrt{15a}$ if $\LARGE a \ge 0$ |
$\LARGE \sqrt{(x^2-a^2)(ax-a^2)} $ | $\LARGE ((x-a)\sqrt{a(x+a)})$ if $\LARGE x\ge a; a\ge 0 $ $\LARGE (a-x)\sqrt{a(x+a)})$ if $\LARGE x\le a; a\ge 0; x \ge -a $ |