$\LARGE \frac{a}{b^2} $ and $\LARGE \frac{c}{b} $ | $\LARGE \frac{a}{b^2}$ and $\LARGE \frac{cb}{b^2}$ |
$\LARGE \frac{a}{x^2b} $ and $\LARGE \frac{a}{xb^3} $ | $\LARGE \frac{ab^2}{x^2b^3}$ and $\LARGE \frac{ax}{x^2b^3}$ |
$\LARGE \frac{x}{a^2+ab} $ and $\LARGE \frac{1}{a}$ | $\LARGE \frac{x}{a(a+b)} $ and $\LARGE \frac{1}{a}$ so: $\LARGE \frac{x}{a(a+b)} $ and $\LARGE \frac{a+b}{a(a+b)}$ |
$\LARGE \frac{b}{a^2-b^2} $ and $\LARGE \frac{a}{a+b}$ | $\LARGE \frac{b}{^(a+b)(a-b)} $ and $\LARGE \frac{a}{a+b}$ so: $\LARGE \frac{b}{(a+b)(a-b)} $ and $\LARGE \frac{a(a-b)}{(a+b)(a-b)}$ |