$6x+3y-(5x+2y+3z)+(-4x-3y)=$ | $-3x-2y-3z$ |
$(4x^3-2x^2+x+1)-(-x^2+3x^3-x-7)-(x^3-4x^2+8+2x))=$ | $3x^2$ |
$(x+2y-6x)- [3y-(6x-6y) ] - [(x-3y)-(2x+5y) ] = $ | $2x+y$ |
$2a-(3b+3c)- {5b-(6c-6b)+5c-[4a-(2c-5b) ]}= $ | $6a-9b-4c$ |
$(a+b-c)c+(a-b+c)b+(-a+b+c)a-2[a(b-a)+b(c-b)+a(a-c)] =$ | $a^2+b^2+c^2 $ |
$[x^2+(n-1)x+1]x + [x^2-(n-1)x+1]x =$ | $2x^3+2x $ |
$x[2x+y-(x+2y)]+x[3x-2y-(2x-3y)]-x[x+3y-(2x+2y)]=$ | $3x^2-xy $ |
$-2ab^2c^2(4a^3-3b^2+c) =$ | $-8a^4b^2c^2+6ab^4c^2-2ab^2c^3 $ |
$91a^2b^2c^2-7a^2b(13bc^2-9b^2c)-21b^3c(3a^2-2c^2) =$ | $42b^3c^3 $ |
$13a^2y^2(8a^5y^7-2a^4y^9)-2a^4y^5(9a^3y^4-13a^2y^6)) =$ | $86a^7y^9 $ |
$(2a+3c)(5a-3c) =$ | $10a^2+9ac-9c^2 $ |
$(5a^2b+9ab^2)(3a+4b) =$ | $15a^3b+47a^2b^2+36ab^3 $ |
$x(2x^2-3y^2)(5x^3-4y^3) =$ | $10x^6-15x^4y^2-8x^3y^3+12y^5 $ |
$(2a^3+4a^2+8a+16)(3a-6) =$ | $6a^4-96 $ |
$(4a^2+2ab+b^2)(2a-b)(8a^3+b^3) =$ | $64a^6-b^6 $ |
$(a+2b)^2 =$ | $(a+2b)(a+2b)=a^2+4ab+4b^2 $ |
$y(x+y)^3 =$ | $x^3y+3x^2y^2+3xy^3+y^4 $ |