Faktorisiere $ T = ax^2 + bx + c $: Diskriminante: $ \Delta = b^2 - 4ac $ $ \Delta \lt 0 $ unmöglich! $ \Delta = 0 $: $ T = a (x + \frac{b}{2a})^2 $ $ \Delta \gt 0 $: $ T = a (x-x_1) (x-x_2) $ mit $ x_1 = \frac{-b + \sqrt \Delta}{2a} $; $ x_2 = \frac{-b- \sqrt \Delta}{2a} \} $

Got it ! Factorisiere: !

$\LARGE x^2 - 9x + 18 =$ $\LARGE (x-3)(x-6) $
$\LARGE 2x^2 - 3x -2 =$ $\LARGE 2(x+\frac{1}{2})(x-2) = (2x+1)(x-2) $
$\LARGE 4x^2 - 4x + 1 =$ $\LARGE 4(x-\frac{1}{2})^2 = (2x-1)^2 $
$\LARGE 63x^2 +25x + 2 =$ $\LARGE (9x+1)(7x+2) $
$\LARGE 5x^2 - 4x -2 =$ $\LARGE 5(x-\frac{2+\sqrt{14}}{5})(x-\frac{2-\sqrt{14}}{5}) $
$\LARGE abx^2 - (a^2+b^2)x + ab =$ $\LARGE ab(x-\frac{a}{b})(x-\frac{b}{a}) =(bx-a)(ax-b) $