$\LARGE x^2+5x+4=0 $ | $\LARGE S=\{-1;-4 \}$ |
$\LARGE x-x^2+42=0 $ | $\LARGE S=\{7;-6 \}$ |
$\LARGE 3x^2-9x+6=0 $ | $\LARGE 3(x^2-3x+2=0)$ und also $\LARGE x^2-3x+2=0;\;\;\;\; S=\{ 2;1 \}$ |
$\LARGE 2x^2+\frac{9}{16} = x $ | $\LARGE 32x^2+9=16x;\;\;\;\; S=\emptyset$ |
$\LARGE x^2-\frac{17x}{6}=\frac{1}{2} $ | $\LARGE S=\{3;-\frac{1}{6} \}$ |
$\LARGE \frac{x^2}{3}+\frac{12}{25}=\frac{4x}{5} $ | $\LARGE S=\{\frac{6}{5} \}$ |
$\LARGE x^2-2ax+a^2-b^2=0 $ | $\LARGE S=\{a+b;a-b \}$ |
$\LARGE (5x-2)(x+3)=7(x-1) $ | $\LARGE S=\{-1;-\frac{1}{5} \}$ |