Die Quadratwurzel einer (notwendigerweise) positiven Zahl ist immer positiv: $ \sqrt {a^2} = a $ wenn $ a \ge 0 $ $ \sqrt {a^ 2} = -a $ wenn $ a \le 0 $ $ \sqrt {a^2} = \vert a \vert $ (Absolutwert von a !)

Got it !

$\LARGE \sqrt {12}= $ $\LARGE 2\sqrt 3$
$\LARGE \sqrt {\frac{1}{9}}= $ $\LARGE \frac{1}{3}$
$\LARGE \sqrt{a^9} = $ $\LARGE a^4\sqrt a$ wenn $\LARGE a \ge 0$
$\LARGE \sqrt{\frac{320a^5}{x^3}} = $ $\LARGE \frac{8a^2}{x^2}\sqrt{5ax} $ , wenn $\LARGE ax\ge 0$
$\LARGE \sqrt{\frac{1}{5}} $ $\LARGE \frac{1}{\sqrt 5}=\frac{1\sqrt 5}{\sqrt 5\sqrt 5}=\frac{\sqrt 5}{5}$ Nenner rational gemacht
$\LARGE \sqrt{\frac{12a^9}{5b^8}}=$ $\LARGE \frac{2a^4}{5b^4}\sqrt{15a}$ wenn $\LARGE a \ge 0$
$\LARGE \sqrt{(x^2-a^2)(ax-a^2)} $ $\LARGE ((x-a)\sqrt{a(x+a)})$ wenn $\LARGE x\ge a; a\ge 0 $
$\LARGE (a-x)\sqrt{a(x+a)})$ wenn $\LARGE x\le a; a\ge 0; x \ge -a $