Multiplikation algebraischer Brüche: $\LARGE \frac{a}{b} \cdot \LARGE \frac{c}{d} = \LARGE \frac{ac}{bd}$

Got it !

$\LARGE \frac{8x-2y}{x+y} \cdot \LARGE \frac{2x-8y}{4x-y} =$ $\LARGE \frac{4(x-4y)}{x+y} $
$\LARGE \frac{4+2a}{6-3a} \cdot \LARGE \frac{3(a-2)^2}{2(a+2)^2} =$ $\LARGE \frac{2-a}{2+a} $
$\LARGE \frac{6a+a^2}{6-a} \cdot \LARGE \frac{a^2-36}{a} =$ $-(a+6)^2$
$\LARGE \frac{a^2x^2}{y^2} \cdot \LARGE \frac{xy}{a(x+y)} \cdot \LARGE \frac{x^2-y^2}{axy} =$ $\LARGE \frac{x^2(x-y)}{y^2} $