Addition und Subtraktion algebraischer Brüche: Gemeinsamer Nenner, dann + oder - Zähler!

Got it !

<
$\LARGE \frac{b}{a} +\LARGE \frac{1}{2ax} =$ $\LARGE \frac{2xb+1}{2ax}$
$\LARGE \frac{1}{a+b} + \LARGE \frac{1}{a-b} =$ $\LARGE \frac{2a}{a^2-b^2}$
$\LARGE \frac{2}{xy} - \LARGE \frac{3y^2-x^2}{xy^3} + \LARGE \frac{xy+y^2}{x^2+y^2} =$ $\LARGE \frac{x^3+y^3}{x^2y^3}$
$2+\LARGE \frac{1}{2-x} + \LARGE \frac{1}{2+x} + \LARGE \frac{4}{x^2-4} =$ 2
$\LARGE \frac{3-2x}{2x+3} - \LARGE \frac{2x+3}{3-2x} + \LARGE \frac{36}{4x^2-0} =$ $\LARGE \frac{12}{2x-3} $
$\LARGE \frac{a^3+2a^2b+ab^2}{a^2-b^2} + \LARGE \frac{a^3+b^3}{(a-b)^2+2b(a-b)} =$ $\LARGE \frac{2a^2+b^2}{a-b} $
$\LARGE \frac{a}{c(a-c)} - \LARGE \frac{a-c}{c(a+c)} - \LARGE \frac{2c}{a^2-c^2} - \LARGE \frac{3}{a+c}=$ $\LARGE \frac{0}{c(a^2-c^2)} = 0 $