Achtung: Zähler und Nenner müssen faktorisiert werden!: $\frac{ba}{bd} = \frac{a}{d}$ |
Got it ! Vereinfache. (Attention: numerator und denominator must be factored!)
$\frac{14b^4x\cdot 5ay}{15a^2x\cdot 7b^3y}= $ | $\frac{2b}{3a} $ |
$\frac{a-3}{2a^2-18}= $ | $\frac{1}{2a+3} $ |
$\frac{a^2+b^2}{(a-b)^2+ab}= $ | $\frac{a+b}{1}=a+b $ |
$\frac{x^2-4x+4}{x^2-4}= $ | $\frac{x-2}{x+2} $ |
$\frac{4a^2+12a+9}{4a^2-9}= $ | $\frac{2a+3}{2a-3} $ |
$\frac{9a^5-16a}{6a^2b^2-8b^2}= $ | $\frac{a(3a^2+4)}{2b^2} $ |
$\frac{25x^2+20ax+4a^2}{2(5ax^3-4a^3x)}= $ | $\frac{5x+2a}{2ax(5x-2a)} $ |