$\definecolor{red}{RGB}{255,0,0}$$\definecolor{black}{RGB}{0,0,0}$
- $a$
- $a$
-
- $a$
-
- $b$
- $b$
-
- $b$
-
- $c$
- $c$
-
- $c$
-
- $x_1$
- $x_1$
- $x_1$
-
- $$\color{blue}{\rightarrow}\color{black}\;x_1 \;= \;\frac{-b+\sqrt{b^2-4ac}}{2a}$$
|
- $x_2$
- $x_2$
- $x_2$
-
- $$\color{blue}{\rightarrow}\color{black}\;x_2 \;= \;\frac{-b-\sqrt{b^2-4ac}}{2a}$$
|
- $d$
- $d$
- $d$
-
- $$\color{blue}{\rightarrow}\color{black}\;d \;= \;-\frac{b^2-4ac}{4a}$$
|
- $e$
- $e$
- $e$
-
- $$\color{blue}{\rightarrow}\color{black}\;e \;= \;-\frac{b}{2a}$$
|
- $f$
- $f$
- $f$
-
- $$\color{blue}{\rightarrow}\color{black}\;f \;= \;\frac{1-b^2+4ac}{4a}$$
|
- $g$
- $g$
- $g$
-
- $$\color{blue}{\rightarrow}\color{black}\;g \;= \;-\frac{1+b^2-4ac}{4a}$$
|
: Radioactivity: Dose by tissue, weighting factor and sensitivity factor, Becquerel, Curie
→ Retour à la liste complète des formules
Si l'équation est de la forme
A x2 + B x + C y + D = 0
calculer d'abord a=-A/C; b=-B/C et c=-D/C