$\definecolor{red}{RGB}{255,0,0}$$\definecolor{black}{RGB}{0,0,0}$
  1. $a$
  2. $a$
  3. $a$
  1. $b$
  2. $b$
  3. $b$
  1. $c$
  2. $c$
  3. $c$
  1. $x_1$
  2. $x_1$
  3. $x_1$
    • $$\color{blue}{\rightarrow}\color{black}\;x_1 \;= \;\frac{-b+\sqrt{b^2-4ac}}{2a}$$
  1. $x_2$
  2. $x_2$
  3. $x_2$
    • $$\color{blue}{\rightarrow}\color{black}\;x_2 \;= \;\frac{-b-\sqrt{b^2-4ac}}{2a}$$
  1. $d$
  2. $d$
  3. $d$
    • $$\color{blue}{\rightarrow}\color{black}\;d \;= \;-\frac{b^2-4ac}{4a}$$
  1. $e$
  2. $e$
  3. $e$
    • $$\color{blue}{\rightarrow}\color{black}\;e \;= \;-\frac{b}{2a}$$
  1. $f$
  2. $f$
  3. $f$
    • $$\color{blue}{\rightarrow}\color{black}\;f \;= \;\frac{1-b^2+4ac}{4a}$$
  1. $g$
  2. $g$
  3. $g$
    • $$\color{blue}{\rightarrow}\color{black}\;g \;= \;-\frac{1+b^2-4ac}{4a}$$
: Radioactivity: Dose by tissue, weighting factor and sensitivity factor, Becquerel, Curie

→    Retour à la liste complète des formules

Si l'équation est de la forme A x2 + B x + C y + D = 0 calculer d'abord a=-A/C; b=-B/C et c=-D/C