Intégrales définies simples

a,b,c,d nombres réels, n nombre entier: →   $\int_a^b n \,dx$ →   $\int_a^b x \,dx$ →   $\int_a^b (cx+d) \,dx$ →   $\int_a^b x^n \,dx$ →   $\int_a^b (cx+d)^n \,dx$ →   $\int_a^b \frac{dx}{x}$ →   $\int_a^b \frac{dx}{cx+d}$ →   $\int_a^b e^x \,dx$ →   $\int_a^b e^{cx+d} \,dx$ →   $\int_a^b c^x \,dx$ avec $c>0$ →   $\int_a^b sin(x)\,dx$ →   $\int_a^b sin(cx+d)\,dx$ →   $\int_a^b cos(x)\,dx$ →   $\int_a^b cos(cx+d)\,dx$ →   $\int_a^b tan(x)\,dx$ →   $\int_a^b cotan(x)\,dx$ →   $\int_a^b cosec(x)\,dx$; $\int_a^b \frac{dx}{cos x}$ →   $\int_a^b sec(x)\,dx$; $\int_a^b \frac{dx}{sin x}$ →   $\int_a^b arcsin(x)\,dx$ →   $\int_a^b arccos(x)\,dx$ →   $\int_a^b arctan(x)\,dx$ →   $\int_a^b sin^2(x)\,dx$ →   $\int_a^b cos^2(x)\,dx$ →   $\int_a^b tan^2(x)\,dx$ →   $\int_a^b cosec^2(x)\,dx$; $\int_a^b \frac{dx}{cos^2 x}$ →   $\int_a^b sec^2(x)\,dx$; $\int_a^b \frac{dx}{sin^2 x}$ →   $\int_a^b cotan^2(x)\,dx$; $\int_a^b \frac{dx}{tan^2 x}$ →   $\int_a^b sin^3(x)\,dx$ →   $\int_a^b cos^3(x)\,dx$ →   $\int_a^b tan^3(x)\,dx$ →   $\int_a^b cosec^3(x)\,dx$; $\int_a^b \frac{dx}{cos^3 x}$ →   $\int_a^b sec^3(x)\,dx$; $\int_a^b \frac{dx}{sin^3 x}$ →   $\int_a^b cotan^3(x)\,dx$; $\int_a^b \frac{dx}{tan^3 x}$ →    $\int_a^b \frac{dx}{x^2+c^2}$ →    $\int_a^b \frac{dx}{x^2-c^2}$, $c^2\lt x^2$ →    $\int_a^b \frac{dx}{x^2-c^2}$, $c^2 \gt x^2$ →    $\int_a^b \frac{dx}{\sqrt{x^2+c^2}}$ →    $\int_a^b \frac{dx}{\sqrt{c^2-x^2}}$ →    $\int_a^b \frac{dx}{\sqrt{x^2-c^2}}$ →    $\int_a^b arcsinx\,dx$ →    $\int_a^b arccosx\,dx$ →    $\int_a^b arctanx\,dx$

Références: Calculs performants

→   Toutes les dérivées →   Table des intégrales →   Toutes les intégrales →   Toutes les intégrales définies