$\definecolor{red}{RGB}{255,0,0}$$\definecolor{black}{RGB}{0,0,0}$
  1. $N$
  2. $N$
  3. $N$
    • $$\color{blue}{\rightarrow}\color{black}\;N \;= \;\frac{A_B}{\lambda}$$
    • $$\color{blue}{\rightarrow}\color{black}\;N \;= \;\frac{A_C\cdot 3,7\cdot 10^{10}}{\lambda}$$
    • $$\color{blue}{\rightarrow}\color{black}\;N \;= \;\frac{A_B\cdot T_{1/2}}{ln\,2}$$
    • $$\color{blue}{\rightarrow}\color{black}\;N \;= \;\frac{A_C\cdot T_{1/2}\cdot 3,7\cdot 10^{10}}{ln\,2}$$
  1. $\lambda$
  2. $\lambda$
  3. $\lambda$
    • $$\color{blue}{\rightarrow}\color{black}\;\lambda\;= \;\frac{ln2}{T_{1/2}} $$
  1. $T_{1/2}$
  2. $T_{1/2}$
  3. $T_{1/2}$
    • $$\color{blue}{\rightarrow}\color{black}\;T_{1/2}\;= \;\frac{ln2}{\lambda} $$
  1. $A_B$
  2. $A_B$
  3. $A_B$
    • $$\color{blue}{\rightarrow}\color{black}\;A_B\;= \;N\cdot \lambda $$
    • $$\color{blue}{\rightarrow}\color{black}\;A_B\;= \;\frac{N\cdot ln\,2} {T_{1/2}} $$
  1. $A_C$
  2. $A_C$
  3. $A_C$
    • $$\color{blue}{\rightarrow}\color{black}\;A_C\;= \;\frac{N\cdot \lambda}{3,7\cdot 10^{10}} $$
    • $$\color{blue}{\rightarrow}\color{black}\;A_C\;= \;\frac{N\cdot ln\,2} {3,7\cdot 10^{10}\cdot T_{1/2}} $$
: Radioactive decomposition, half-life time, activity

→    Back to the complete list of formulas

→    Half-lifes

If you want to introduce for example $1,6\cdot 10^{-9}$ type 1.6E-9