$\definecolor{red}{RGB}{255,0,0}$$\definecolor{black}{RGB}{0,0,0}$
- $N_o$
- $N_o$
- $N_o$
-
- $$\color{blue}{\rightarrow}\color{black}\;N_o \;= \;N\cdot e^{\lambda t}$$
|
- $N$
- $N$
- $N$
-
- $$\color{blue}{\rightarrow}\color{black}\;N \;= \;N_o\cdot e^{-\lambda t}$$
|
- $t$
- $t$
- $t$
-
- $$\color{blue}{\rightarrow}\color{black}\;t\;= \;\frac{1}{\lambda} \cdot ln\frac{N_o}{N}$$
|
- $\lambda$
- $\lambda$
- $\lambda$
-
- $$\color{blue}{\rightarrow}\color{black}\;\lambda\;= \;\frac{1}{t} \cdot ln\frac{N_o}{N}$$
|
- $$\color{blue}{\rightarrow}\color{black}\;\lambda\;= \;\frac{ln2}{T_{1/2}} $$
|
- $T_{1/2}$
- $T_{1/2}$
- $T_{1/2}$
-
- $$\color{blue}{\rightarrow}\color{black}\;T_{1/2}\;= \;\frac{ln2}{\lambda} $$
|
: Radioactive decomposition, half-life time, number of nucleons
→ Back to the complete list of formulas
→ Half-lifes
If you want to introduce for example $1,6\cdot 10^{-9}$ type: 1.6E-9