$\definecolor{red}{RGB}{255,0,0}$$\definecolor{black}{RGB}{0,0,0}$
  1. $N_o$
  2. $N_o$
  3. $N_o$
    • $$\color{blue}{\rightarrow}\color{black}\;N_o \;= \;N\cdot e^{\lambda t}$$
  1. $N$
  2. $N$
  3. $N$
    • $$\color{blue}{\rightarrow}\color{black}\;N \;= \;N_o\cdot e^{-\lambda t}$$
  1. $t$
  2. $t$
  3. $t$
    • $$\color{blue}{\rightarrow}\color{black}\;t\;= \;\frac{1}{\lambda} \cdot ln\frac{N_o}{N}$$
  1. $\lambda$
  2. $\lambda$
  3. $\lambda$
    • $$\color{blue}{\rightarrow}\color{black}\;\lambda\;= \;\frac{1}{t} \cdot ln\frac{N_o}{N}$$
    • $$\color{blue}{\rightarrow}\color{black}\;\lambda\;= \;\frac{ln2}{T_{1/2}} $$
  1. $T_{1/2}$
  2. $T_{1/2}$
  3. $T_{1/2}$
    • $$\color{blue}{\rightarrow}\color{black}\;T_{1/2}\;= \;\frac{ln2}{\lambda} $$
: Radioactive decomposition, half-life time, number of nucleons

→    Back to the complete list of formulas

→   Half-lifes

If you want to introduce for example $1,6\cdot 10^{-9}$ type: 1.6E-9