$\definecolor{red}{RGB}{255,0,0}$$\definecolor{black}{RGB}{0,0,0}$
- $n$
- $n$
-
- $n$
-
- $i$
- $i$
-
- $i$
-
- $E$
- $E$
- $E$
-
- $$\color{blue}{\rightarrow}\color{black}\;$$$$E(eV) = -\frac{3,16}{n^2}$$
|
- $E_{ni}$
- $E_{ni}$
- $E_{ni}$
-
- $$\color{blue}{\rightarrow}\color{black}\;$$$$E_{ni}(eV) = (\frac{1}{i^2}-\frac{1}{n^2})\cdot 3.16 $$
|
- $\nu_{ni}$
- $\nu_{ni}$
- $\nu_{ni}$
-
- $$\color{blue}{\rightarrow}\color{black}\;$$$$\nu_{ni}(Hz) = \frac{E_{ni}}{h} $$
|
- $$\color{blue}{\rightarrow}\color{black}\;$$$$\nu_{ni}(Hz) = \frac{1}{h}(\frac{1}{i^2}-\frac{1}{n^2})\cdot 3.16 \cdot 1.60218 \cdot 10^{-19} $$
|
- $\lambda_{ni}$
- $\lambda_{ni}$
- $\lambda_{ni}$
-
- $$\color{blue}{\rightarrow}\color{black}\;$$$$\lambda_{ni}(nm) = \frac{c\cdot h}{E_{ni}} $$
|
- $$\color{blue}{\rightarrow}\color{black}\;$$$$\lambda_{ni}(nm) = \frac{c\cdot h\cdot 10^9}{(\frac{1}{i^2}-\frac{1}{n^2})\cdot 3.16 \cdot 1.60218 \cdot 10^{-19} } $$
|
→ Zurück zur vollständigen Formelliste
Das Bohr-Atom: Quantenzahl der Schichten, Energie, Frequenz und Wellenlänge des emittierten Lichts
Zahlen in der Form 1/2 oder 0.5 oder 1.5E3 werden akzeptiert: