- $$\color{blue}{\rightarrow}\color{black}\;$$
$$a=d;$$
$$ b\neq e: X=\frac{f-c}{b-e}; Y= aX^2+bX+c;$$ $$I(X,Y);$$
$$a\neq d:$$
$$\Delta=(b-e)^2-4(a-d)(c-f);$$
$$\Delta \lt 0 :$$ aucune intersection
$$\Delta=0 :$$ $$X=\frac{e-b}{2(a-d)};Y= aX^2+bX+c;$$ $$ I(X,Y);$$
$$\Delta\gt 0 :$$ $$X_{1,2}=\frac{(e-b)\pm \sqrt{\Delta} }{2(a-d)}; Y_{1,2}= aX_{1,2}^2+bX_{1,2}+c; $$ $$I_{1,2}(X_{1,2},Y_{1,2})$$
|