$\definecolor{red}{RGB}{255,0,0}$$\definecolor{black}{RGB}{0,0,0}$
- $a$
- $a$
- $a$
-
- $$\color{blue}{\rightarrow}\color{black}\;a \;= \;\frac{q}{x_1\cdot x_2}$$
|
- $b$
- $b$
- $b$
-
- $$\color{blue}{\rightarrow}\color{black}\;b \;= \;-\frac{q(x_1+x_2)}{x_1\cdot x_2}$$
|
- $c$
- $c$
- $c$
-
- $$\color{blue}{\rightarrow}\color{black}\;c \;= \;q$$
|
- $x_1$
- $x_1$
-
- $x_1$
-
- $x_2$
- $x_2$
-
- $x_2$
-
- $q$
- $q$
-
- $g$
-
- Gleichung
- Gleichung
- Gleichung
-
- $$\color{blue}{\rightarrow}\color{black}\;y=\frac{q}{x_1\cdot x_2}\cdot x^2-\frac{q(x_1+x_2)}{x_1\cdot x_2}\cdot x+q $$
|
Gleichung der Parabel aus den Schnittpunkten mit den Achsen
→ Zurück zur vollständigen Formelliste