Dissociation of acids and bases 
 Tutorial 3
  
       
    
    
 
    
        
 Dissociation of acids and bases ; acidity and basicity constants
 Dissociation of a strong acid $HB $ 
 $HB + H_2O $ $\rightarrow$ $H_3O^+ + B^-$
 Dissociation of a strong base $B $
 
 $B + H_2O $ $\rightarrow $ $OH^- + HB $
(Charges may differ!)
Dissociation of a weak acid $HB$ 
$HB + H_2O$ $\leftrightarrows$ $H_3O^+ + B^-$
(Charges may differ!)
Constant of acidity
($\neq $ constant of the former equilibrium):
$K_a = \frac{[H_3O^+] [B^-]} {[HB]} $
 Dissociation of a weak base $B $
 $B + H_2O $ $\leftrightarrows $ $OH^- + HB^+ $
(Charges may differ!) 
Basicity Constant
($\neq $constant of the former equilibrium):
$K_b=\frac{[OH^-][HB]}{[B]}$
Relations
$pK_a=-logK_a$
$K_a=10^{-pK_a}$
$pK_b=-logK_b$
$K_b=10^{-pK_b}$
$K_a\cdot K_b$ $=$ $10^{-14}$
$pK_a+pK_b$ $=$ $14$
 
	   
 
Calculate the number of moles of $ HF $ and $ F^- $ present in $ 2.0 \; L $ of hydrofluoric acid $ 0.10 \; M $ at $pH=2.5$ 
        
	
 For answers, use (possibly several times) the arrows ↑ Down! and ↓ Up!  Span>
 Complete please this question before moving on to the next one!
 
        First calculate the total number of moles (= initial number of moles of acid).
  
 
       $n_{tot}$ $=$ $2.0\cdot 0.10$ $=$ $0.20\; mol$
  
       Call $ x $ the number of moles of fluoride and enter in the expression of the ratio of the numbers of moles as a function of $ K_a $ and [H_3O^+] !
 
  
$\frac{[F^-]}{[HF]}=\frac{K_a}{[H_3O^+]}$
$\frac{n_{F^-}}{n_{HF}}=\frac{K_a}{[H_3O^+]}$
$\frac{x}{0.20-x}=\frac{10^{-3.17}}{10^{-2.5}}$
  
  
$x=0.214(0.20-x)$
$n_{F^-}$ $=$ $x$ $=$ $0.035\;mol$
$n_{HF}$ $=$ $0.20-x$ $=$ $0.165\;mol$