What is the pH of a mixture of $ 1.0 \; L \; NaOH \ 0.15 \; \frac{mol}{L} $ with $ 1.0 \; L \; H_3PO_4 \; 0.10 \; \frac{mol}{L} $? Write the (nonionic) equation of the reaction!
For answers, use (possibly several times) the arrows ↑ Down! and ↓ Up! Span> Complete please this question before moving on to the next one!
$NaOH$ $+$ $H_3PO_4$ $ \rightarrow $ $NaH_2PO_4$ $+$ $H_2O$
Complete the following table:
$NaOH$ | + | $H_3PO_4$ | $NaH_2PO_4$ | + | $H_2O$ | ||
initial nb of moles | 0.15 | 0.10 | 0 | ||||
variation of mole nbs | ........ | ........ | ........ | ||||
final nb of moles | ........ | ........ | ........ |
$NaOH$ | + | $H_3PO_4$ | $NaH_2PO_4$ | + | $H_2O$ | ||
initial nb of moles | 0,15 | 0,10 | 0 | ||||
variation of mole nbs | -0.10 | -0.10 | +0.10 | ||||
final nb of moles | 0.05 | 0 | 0.10 |
Write the solutes present at the end with their molarities!
$[NaH_2PO_4]=\frac{0.10}{2.0}=0.05\frac{mol}{L}$ $[NaOH]=\frac{0.05}{2.0}=0.025\frac{mol}{L}$
Analyse the final mixture!
$NaH_2PO_4$ dissociates to $H_2PO_4^-$and $Na^+$ $NaOH$ dissociates to $OH^-$ and $Na^+$ $Na^+$ has no influence. $H_2PO_4^-$ Is an ampholyte, but also a weak acid! $OH^-$ is treated as a strong base! There will be a reaction. Which?
$NaOH$ $+$ $NaH_2PO_4$ $ \rightarrow $ $Na_2HPO_4$ $+$ $H_2O$
Complete the following table:
$NaOH$ | + | $NaH_2PO_4$ | $Na_2HPO_4$ | + | $H_2O$ | ||
initial nb. of moles | 0.05 | 0.10 | 0 | ||||
variation of mole nbs | ........ | ........ | ........ | ||||
final nb. of moles | ........ | ........ | ........ |
$NaOH$ | + | $NaH_2PO_4$ | $Na_2HPO_4$ | + | $H_2O$ | ||
initial nb. of moles | 0,05 | 0,10 | 0 | ||||
variation of mole nbs | -0.05 | -0.05 | +0.05 | ||||
final nb. of moles | 0.0 | 0.05 | 0.05 |
Write the solutes present at the end with their numbers of moles!
$n_{NaH_2PO_4}= 0.05\; mol$ $n_{Na_2HPO_4}= 0.05\; mol$
Analyse the final mixture!
$NaH_2PO_4$ dissociates to $H_2PO_4^-$ and $Na^+$ $Na_2HPO_4$ dissociates to $HPO_4^{2-}$ and $2Na^+$ $Na^+$ has no influence. $H_2PO_4^-$ and $HPO_4^{2-}$ are a buffer !
Calculate its pH!
$pH$ $=$ $pK_a+log\frac{n_{HPO_4^{2-}}}{n_{H_2PO_4^-}}$ $=$ $7.21+log\frac{0.05}{0.05}$ $=$ $7.21$ .