The decrease of the melting temperature of a dilute solution of an ideal nonvolatile solute $A$ is proportional to the molality of the solute: $ \Delta T = K_{fus} \cdot \mu_A $ $ K_ {fus} $ is the cryoscopic constant that depends on the solvent
Solvent | Name | $t_{fus}$ | $K_{fus}$ |
CH3CO2H | Acetic acid | $16.604$ | $3.90$ |
CH3COCH3 | Acetone | $-95.35$ | $0.850$ |
C6H5NH2 | Aniline | $-6.3$ | $5.87$ |
C6H6 | Benzene | $5.5$ | $4.90$ |
CS2 | Carbon disulfide | $-111.5$ | $3.83$ |
CCl4 | Carbon tetrachloride | $-22.99$ | $30.0$ |
CHCl3 | Chloroforme | $-63.5$ | $4.70$ |
C6Hl2 | Cyclohexane | $6.55$ | $20.0$ |
(C2H5)2O | Diethylether | $-116.2$ | $1.79$ |
C10H8 | Naphtalene | $80.55$ | $6.80$ |
C6H5NO2 | Nitrobenzene | $5.7$ | $7.00$ |
C6H5OH | Phenol | $43$ | $7.27$ |
C2H5OH | Ethanol | $-117.3$ | $1.99$ |
H2O | Water | $0.0$ | $1.86$ |
The increase in the boiling temperature of an ideal dilute solution of a nonvolatile solute $A$ is proportional to the molality of the solute: $ \Delta T = K_{eb} \cdot \mu_A $ $ K_{eb} $ is the ebullioscopic constant that depends on the solvent
Boiling points and ebullioscopic constants in $\frac{^o}{mol}$
Solvent | Name | t(eb) | $K_{eb}$ |
CH3CO2H | Acetic acid | $117.9$ | $3.07$ |
CH3COCH3 | Acetone | $56.2$ | $1.71$ |
C6H5NH2 | Aniline | $184.13$ | $3.22$ |
C6H6 | Benzene | $80.1$ | $2.53$ |
CS2 | Carbon disulfide | $46.2$ | $2.37$ |
CCl4 | Carbon tetrachloride | $76.5$ | $4.95$ |
CHCl3 | Chloroforme | $61.2$ | $3.66$ |
C6Hl2 | Cyclohexane | $80.74$ | $2.79$ |
(C2H5)2O | Diethylether | $34.5$ | $1.82$ |
C10H8 | Naphtalene | $218$ | $5.8$ |
C6H5NO2 | Nitrobenzene | $210.8$ | $5.26$ |
C6H5OH | Phenol | $181.75$ | $3.04$ |
C2H5OH | Ethanol | $78.5$ | $1.22$ |
H2O | Water | $100.0$ | $0.512$ |
If a gas $S$ is in contact with a liquid (where it is poorly soluble and with which it does not react), then - its mole fraction $X_S $ in the liquid is proportional at equilibrium to its partial pressure above the liquid: $X_S$ $=$ $k\cdot P_S$ $P_S$ $=$ $K\cdot X_S$ with: $k=\frac{1}{K}$ $P_S$ partial pressure of the gas above the liquid $K$ Henry´s constant expressed in $atm$ - its molarity $[S]$ in the liquid is proportional at equilibrium to its partial pressure above the liquid: $[S]$ $=$ $k_h\cdot P_S$ $P_S$ $=$ $K_H\cdot [S]$ with: $k_h=\frac{1}{K_H}$ $P_S$ partial pressure of the gas above the liquid $K_H$ Henry´s constant expressed in $\frac{L\cdot atm}{mol}$
Henry´s constants
$25^oC$ | $K_H$ $(\frac{L \cdot atm}{mol})$ | $k_h$ $(\frac{mol}{L\cdot atm})$ | $K$ $(atm)$ |
---|---|---|---|
O2 | 769.23 | 1.3×10-3 | 4.259×104 |
H2 | 1282.05 | 7.8×10-4 | 7.099×104 |
CO2 | 29.41 | 3.4×10-2 | 0.163×104 |
N2 | 1639.34 | 6.1×10-4 | 9.077×104 |
He | 2702.7 | 3.7×10-4 | 14.97×104 |
Ne | 2222.22 | 4.5×10-4 | 12.30×104 |
Ar | 714.28 | 1.4×10-3 | 3.955×104 |
CO | 1052.63 | 9.5×10-4 | 5.828×104 |