The rate equation

Exercise 4

    

Recombination of iodine atoms in the gas phase in the presence of argon obeys the equation: $2I(g)$ $+$ $Ar(g)$ $\longrightarrow$ $I_2(g)$ $+$ $Ar(g)$ Here experimental results for the rate of formation of $I_2$ (in $\frac{mol}{L\cdot s})$ depending on the initial concentrations of the reagents (in $\frac{mol}{L})$:

$[I(g)]$$[Ar(g)]$$v_{I_2}$
$1.0\cdot 10^{-5}$$1.0\cdot 10^{-3}$$8.7\cdot 10^{-4}$
$2.0\cdot 10^{-5}$$1.0\cdot 10^{-3}$$3.48\cdot 10^{-3}$
$2.0\cdot 10^{-5}$$5.0\cdot 10^{-3}$$1.74\cdot 10^{-2}$

Find the rate law! What about the orders of reagents?

- As the coefficient of $I_2$ is $1$, we have: $v_r$ $=$ $\frac{\Delta [I_2]}{1\cdot \Delta t}$ $=$ $\frac{\Delta [I_2]}{\Delta t}$ $=$ $v_{I_2}$ - The rate law $v_r=k[I(g)]^{\alpha}[Ar]^{\beta}$ becomes: (1) $8.7\cdot 10^{-4}$ $=$ $k(1.0\cdot 10^{-5})^{\alpha}(1.0\cdot 10^{-3})^{\beta}$ (2) $3.48\cdot 10^{-3}$ $=$ $k(2.0\cdot 10^{-5})^{\alpha}(1.0\cdot 10^{-3})^{\beta}$ (3) $1.74\cdot 10^{-2}$ $=$ $k(2.0\cdot 10^{-5})^{\alpha}(5.0\cdot 10^{-3})^{\beta}$ Dividing (2) by (1): $4 = 2^{\alpha}$ $\alpha=2$ Dividing (3) by (2): $5 = 5^{\beta} $ $\beta=1$ Introducing to (1): $k=$ $\frac{8.7\cdot 10^{-4}}{(1.0\cdot 10^{-5})^2\cdot 1.0\cdot 10^{-3}}$ $ = $ $8.7\cdot 10^9 \frac{L^2}{mol^2\cdot s}$ Rate law: $v_r$ $=$ $8.7\cdot 10^9[I(g)]^2[Ar(g)]$ Order is (here) always equal to molecularity!