Determination of the molecular formula by the percentage of elements and the molar mass

Exercise 5

The analysis of a substance $S$ gives following results: - presence of $C$, $H$, $O$ and $N$. - 0.654 g produce 0.977 g $CO_2$ and 0.499 g $H_2O$ by combustion. - The Dumas method applied to $0.710\;g$ of this substance consists in eliminating all of the combustion products. excluding nitrogen $N_2$ which is collected by water displacement: $153.4\; mL$ of gas are so collected on sea level on a water tank at $20\;^oC$ under atmospheric pressure of $1.00665\; 10^5 \frac{N}{m^2}$. The water level in the cylinder is $68\; mm$ above the level of the tank. Knowing that the saturation vapor pressure of water at $ 20\;^oC$ is $0.025\;10^5\frac{N}{m^2}$ and the volumic mass of water at $20\;^oC $ is $0.998\frac{g}{mL}$. give the percentage composition of $C$, $H$ , $O$ and $N$. -$1.5\; g$ of this substance. dissolved in $100\; g$ water lower the freezing point by $0.47\;^oC$. The cryoscopic constant of water is $1.850\;^oC$. Find the molar mass of the unknown substance. and write all possible developed formulas .

1) %N by Dumas: According to the basic principle of hydrostatic we have: $p_A =$ $p_B$ $= $ $1.00665\; 10^5 \frac{N}{m^2}$ $p_B - p_C$ $=$ $\rho_{H_2O}\cdot g \cdot h $ = $998 \frac{kg}{m^3}$ $\cdot \; 9.81 \frac{N}{kg} $ $\; \cdot 0.068 m$ = $0.00665\; 10^5 \frac{N}{m^2}$. so: $p_C $ $=$ $1.00000\cdot 10^5 \frac{N}{m^2} $ Pressure of nitrogen alone = $p_N$ $p_C-p_{water\;vapour}$ = $0.975\cdot 10^5 \frac{N}{m^2}$ According to the perfect gas law we have: $n_{N_2}$= $ \frac{0.975\cdot 10^5\cdot 153.4\cdot 10^{-6}}{8.314\cdot 293.15}$ = $0.00614$ $m_N$ $=$ $0.00614 \cdot 28$ $=$ $0.172\; g$ $\%_N$ $=$ $\frac{0.172\cdot 100}{0.710}$ =$24.2\; \%$ 2) %others by the combustion products: $m_C$ $=$ $n_{CO_2}\cdot 12$ = $\frac{0.977}{44}\cdot 12$ $=$ $0.266 \; g$ $\%_C$ $=$ $\frac{0.266\cdot 100}{0.654}\; g$ = $40.7\; \%$ $m_H$ $=$ $n_{H_2O}\cdot 2$ = $\frac{0.499}{18}\cdot 2$ $=$ $0.0554 \; g$ $\%_H$ $=$ $\frac{0.0554\cdot 100}{0.654}\; g$ = $8.5\; \%$ $\%_O$ $=$ $100-40.7-8.5-24.2$ = $26.6\; \%$ 3) Molar mass by cryometry: $\mu_{S}$ $=$ $\frac{\Delta T}{K_f}$ = $ \frac{0.47}{1.850}$ = $0.254$ $n_S$ $=$ $\mu_{S}\cdot 0.100$ $=$ $0.0254$ $M_S=\frac{m_S}{n_S}$ = $\frac{1.5}{0.0254}$ $=$ $59.1\frac{g}{mol}$ 5) Molecular formula: One mole S contains $\frac{59.1\cdot 0.242}{14}$ $=$ $1\; mole\; N$ $\frac{59.1\cdot 0.407}{12}$ $=$ $2\; mole\; C$ $\frac{59.1\cdot 0.085}{1}$ $=$ $5 \;mole\; H$ $\frac{59.1\cdot 0.266}{16}$ $=$ $1\; mole\; O $ Molecular formula: $C_2H_5NO$