pH of acids, bases and salts
Exercise 12

Using the table of acid-base couples, calculate the $pH$ of a 2.5 % ($d$ = 1.0275) sodium phosphate solution named $S$
$PO_4^{3-}$: weak base
If $d$ = 1.0275, then $\rho$ = 1.0275 $\frac{g}{mL}$
Let's take $1\;L$ of the solution $S$:
$m_S$ $=$ $\rho \cdot V_S$ $ =$ $ \rho \cdot 1000 $ =
1027.5$\; g$
$m_{Na_3PO_4}$ =
$\frac{\%_{Na_3PO_4}\cdot m_S}{100} $ =
$\frac{2.5 \cdot1027.5}{100} $ =
25.69$\; g$
$n_{Na_3PO_4}$ $=$ $\frac{m_{Na_3PO_4}}{M_{Na_3PO_4}}$ =
$\frac{25.69}{163.96}$ =
0.157$ \;mol$
$c_{Na_3PO_4}$ = $\frac{n_{Na_3PO_4}}{V_S}$ =
$\frac{0.157}{1}$ =
0.157 $\frac{mol}{L}$
$c_{Na_3PO_4}$ $=$ $c_{PO_4^{3-}}=c$
Given $z=[OH^-]$
The equation
$z^2$ $+$ $K_bz$ $-$ $K_bc$ $=$ $0$
becomes:
$z^2$ $+$ $10^{-1.7}z$ $-$ $10^{-1.7} 0.157$ $= $ $0$
and produces:
$z$ $=$ 4.68 10-2
and so:
$pOH$ $=$ $-log\; z $ = 1.33
$pH$ $=$ $14$ $-$ $pOH$ = 12.67