pH of acids, bases and salts
Exercise 7

Using the table of acid-base couples, calculate the $pH$ of a 1.5 % ($d$ = 1.0137) zinc sulfate solution named $S$.
$Zn(H_2O)_6^{2+}: $ weak acid
If $d$ = 1.0137, then $\rho$ = 1.0137 $\frac{g}{mL}$
Let's take $1\;L$ of solution $S$:
$m_S$ $=$ $\rho \cdot V_S $ $=$ $ \rho \cdot 1000 $ =
1013.7$\; g$
$m_{ZnSO_4}$ =
$\frac{\%_{ZnSO_4}\cdot m_S}{100} $ =
$\frac{1.5 \cdot1013.7}{100} $ =
15.21$\; g$;
$n_{ZnSO_4}=\frac{m_{ZnSO_4}}{M_{ZnSO_4}}$ =
$\frac{15.21}{161.44}$ =
0.094$\; mol$
$c_{Zn(H_2O)_6^{2+}}$ =
$c_{ZnSO_4}$ =
$\frac{n_{ZnSO_4}}{V_S}$ =
$\frac{0.094}{1}$ =
0.094 $\frac{mol}{L}$
Given $y=[H_3O^+]$
The equation
$y^2$ $+$ $K_a\;y$ $-$ $K_a\;c$ $=$ $0$
becomes:
$y^2$ $+$ $10^{-8.96}y$ $-$ $10^{-8.96} 0.094$ $=$ $0$
and produces:
$y=$ 1.02 10-5
and so:
$pH$ $=$ $-log\; y$ $ =$ 4.991